Recap of the last lecture

Regular Expression (RE)

- A standard notation of characterizing a text sequence
- How can we search for any of the following:
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

• RE search requires a pattern and a corpus of texts to search through.

Morphology: Definition

The study of words, how they are formed, and their relationship to other words in the same language.

The Porter Stemmer (Porter, 1980)

- A simple rule-based algorithm for stemming
- An example of a HEURISTIC method
- Based on rules like:
 - ATIONAL -> ATE (e.g., relational -> relate)
- The algorithm consists of seven sets of rules, applied in order

Spelling Error: Minimum Edit Distance

How similar are two strings?

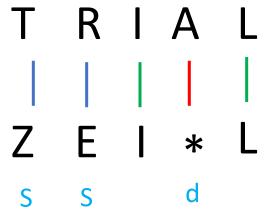
- Spell correction
 - The user typed "Appl" Which is closest?
 - App
 - Appeal
 - Apple

- Computational Biology
 - Align two sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

• Resulting alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC


• Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

- The minimum edit distance between two strings
- Is the minimum number of editing operations
 - Insertion (I)
 - Deletion (D)
 - Substitution (S)
- Need to transform one into the other

Minimum Edit Distance

• Two strings and their **alignment**: TRIAL vs ZEIL

- If each operation has cost of 1
 - Distance between these is 3
- If substitutions cost 2 (Levenshtein)
 - Distance between them is 5

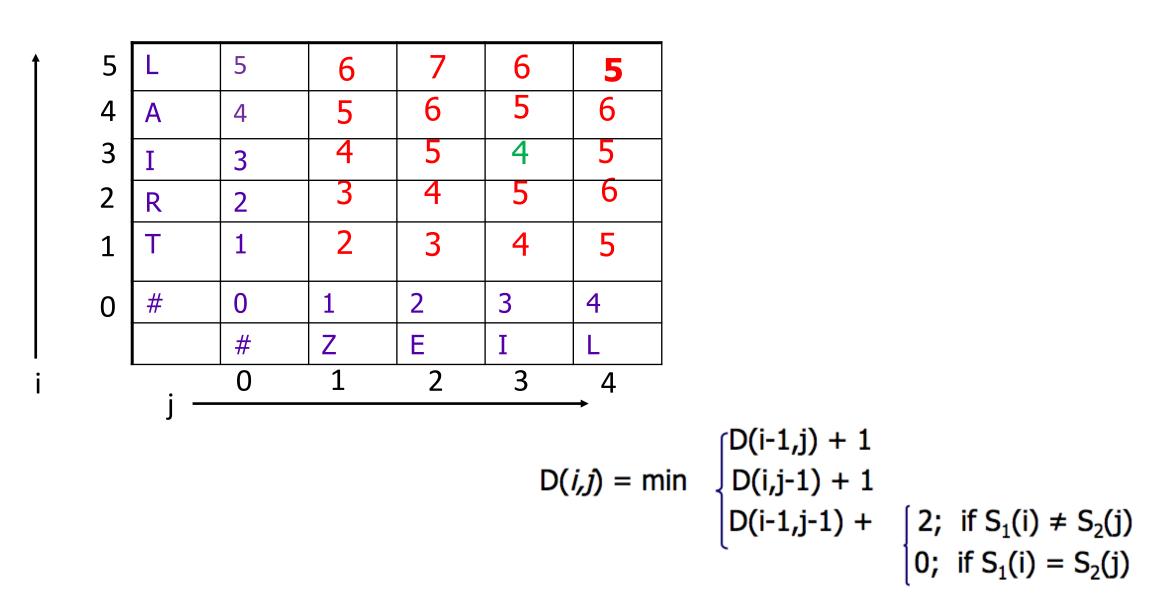
INTE * NTION | | | | | | | | | | * EXECUTION dss is

Other uses of Edit Distance in NLP

- Evaluating Machine Translation and speech recognition
 Spokesman confirms senior government adviser was shot
 Spokesman said the senior adviser was shot dead
 S I
 D I
- Named Entity Extraction and Entity Coreference
 - IBM Inc. announced today
 - IBM profits
 - US President Donald Trump announced yesterday
 - for United States President Donald Trump

Minimum Edit as Search

- But the space of all edit sequences is huge!
 - We can't afford to navigate naïvely
 - Lots of distinct paths wind up at the same state.
 - We don't have to keep track of all of them


Defining Min Edit Distance

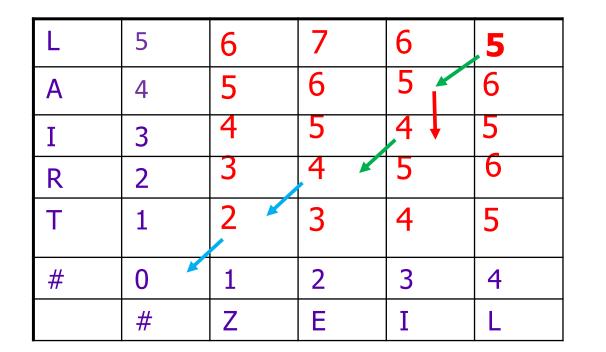
- For two strings
 - X of length *n*
 - Y of length *m*
- We define D(i,j)
 - the edit distance between X[1..i] and Y[1..j]
 - i.e., the first *i* characters of X and the first *j* characters of Y
- The edit distance between X and Y is thus D(n,m)

The Edit Distance Table

1	L	5				
	А	4				
	Ι	3				
	R	2				
	т	1				
	#	0	1	2	3	4
		#	Z	E	Ι	L
Ì	j					

The Edit Distance Table

The Edit Distance Table

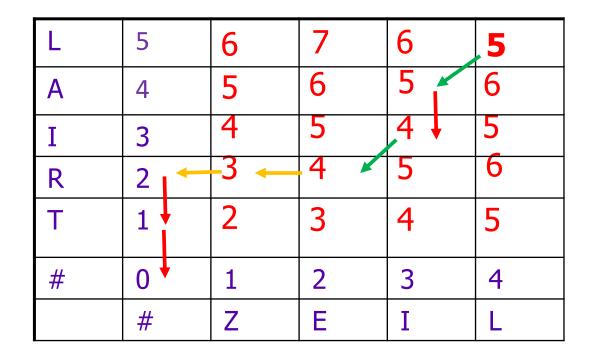

(INTENSION vs EXECUTION)

Ν	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
Ν	5	4	5	6	7	8	9	10	11	10
E	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
Ν	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

Computing Alignments

- Edit distance isn't sufficient
 - We often need to **align** each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

Edit Distance with Backtrace



Substitute
 No Change
 Delete

 $D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases}$

T R I A L | | | | | Z E I * L s s d

Edit Distance with Backtrace (Another Path)

- No Change

Insert

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \\ 0; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases}$$

Cost is same, i.e., 5

MinEdit with Backtrace

n	9	↓ 8	∠←↓9	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓ 9	∠ 8	
0	8	↓ 7	∠←↓ 8	∠́←↓ 9	∠←↓ 10	∠←↓ 11	↓ 10	↓ 9	∠ 8	$e \to 9$	
i	7	↓ 6	∠←↓ 7	∠←↓ 8	9 ,⊥→∑	∠←↓ 10	↓ 9	∠ 8	← 9	$\leftarrow 10$	
t	6	↓ 5	∠←↓6	∠←↓ 7	∠←↓ 8	9 ,⊥→∑	∠ 8	← 9	<i>←</i> 10	$\leftarrow \downarrow 11$	
n	5	↓ 4	∠←↓ 5	∠←↓6	∠́←↓ 7	∠́←↓ 8	∠←↓ 9	∠←↓ 10	∠←↓ 11	∠↓ 10	
e	4	∠ 3	← 4	∠ ← 5	← 6	← 7	$\leftarrow \downarrow 8$	∠́←↓ 9	∠←↓ 10	↓ 9	
t	3	∠←↓4	∠ ← 5	∠←↓6	∠, , 7	∠←↓ 8	∠ 7	$\leftarrow \downarrow 8$	∠, →, 9	↓ 8	
n	2	∠←↓3	∠←↓4	∠←↓ 5	∠←↓6	∠́←↓ 7	∠←↓ 8	↓ 7	∠←↓ 8	∠ 7	
i	1		∠←↓3	∠←↓ 4	∠←↓ 5	∠←↓6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

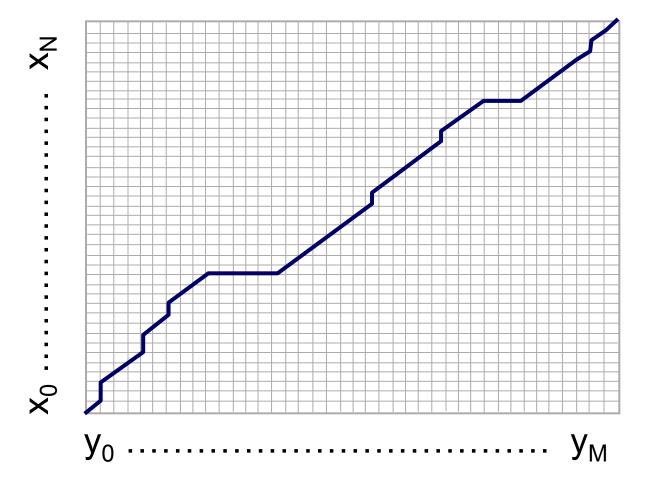
Adding Backtrace to Minimum Edit Distance

• Base conditions:

D(i,0) = i D(0,j) = j D(N,M) is distance

• Recurrence Relation:

```
For each i = 1...M
          For each j = 1...N
               each j = 1....


D(i-1,j) + 1 deletion

D(i,j-1) + 1 insertion

D(i-1,j-1) + 2; \{ if X(i) \neq Y(j) \\ 0; \{ if X(i) = Y(j) \} \}
                                                                                                            substitution
               ptr(i,j) = LEFT insertion
DOWN deletion
DIAG substitution
```

Termination:

The Distance Matrix

Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Performance

- •Time: O(nm)
- Space: O(nm)
- •Backtrace: O(n+m)